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ABSTRACT 
 

Decision tree classifiers have received much recent attention, particularly with regards to land 

cover classifications at continental to global scales. Despite their many benefits and general 

flexibility, the use of decision trees with high spatial resolution data has not yet been fully explored. 

In support of the National Park Service Vegetation Mapping Program, we have examined the 

feasibility of using a commercially available decision tree classifier with multi-temporal satellite data 

from the Enhanced Thematic Mapper-Plus (ETM+) instrument to map 11 land cover types at the 

Delaware Water Gap National Recreation Area near Milford, PA. Ensemble techniques such as 

boosting and consensus filtering of the training data were used to improve both the quality of the 

input training data as well as the final products. 

Using land cover classes as specified by the National Vegetation Classification Standard at 

the Formation level, the final land cover map has an overall accuracy of 82% (Kappa=0.80) when 

tested against a validation data set acquired on the ground (n=195). This same accuracy is 99.5% 

when considering only forest vs. non-forest classes. Usage of ETM+ scenes acquired at multiple 
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dates improves the accuracy over the use of a single date, particularly for the different forest types. 

These results demonstrate the potential applicability and usability of such an approach to the entire 

National Park system, and to high spatial resolution land cover and forest mapping applications in 

general. 

 

I. INTRODUCTION 

Traditional approaches to land cover classification from remotely-sensed data have typically 

relied on statistical classifiers such as supervised Maximum Likelihood Classifiers (MLC) or 

unsupervised isoclustering techniques, to name but a few (e.g. Swain and Davis 1978; Richards 

1983). Increasingly, advances in the fields of pattern recognition and machine learning have led to the 

application of decision tree and neural network classifiers, particularly with regards to land cover 

classifications at global to continental scales (DeFries et al. 1998; Strahler et al. 1999; Hansen et al. 

2000). In fact, decision trees are also used in global land cover classification algorithms for the 

MODerate Resolution Imaging Spectroradiometer (MODIS) (Strahler et al. 1999) and are planned for 

use with data from future instruments such as the Visible/Infrared Imager/Radiometer Suite (VIIRS) 

to be flown onboard the National Polar-orbiting Operational Environmental Satellite System 

(NPOESS) (Brown de Colstoun et al. 2000). 

Decision trees have been preferred to statistical classifiers for these coarse scale applications 

because they do not make any implicit assumptions about normal distributions in the input data, as an 

MLC would (Hansen et al. 1996; Friedl and Brodley 1997). These classifiers can also accept a wide 

variety of input data, including non-remotely-sensed ancillary data, and in the form of both 

continuous and/or categorical variables. The general simplicity and hierarchical structure of the 

results from decision trees can also be valuable assets to both experienced and inexperienced users 
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for interpretation, algorithm testing and refinement, and analysis. Finally, decision trees have been 

shown to provide improved accuracies over the use of other more traditional classifiers (e.g. Strahler 

et al. 1999; Brown de Colstoun et al. 2000). In spite of these proven benefits, however, the use of 

decision trees for applications with high spatial resolution data such as Landsat Thematic Mapper 

(TM) or Enhanced Thematic Mapper-Plus (ETM+) has not yet been fully explored.  

The goal of the research reported here is to evaluate the performance of the commercially-

available decision tree classifier C5.0 (Quinlan 1993) for land cover classifications using 30 m 

resolution data from the ETM+ instrument onboard the Landsat 7 satellite. During this evaluation, 

methods developed primarily with coarse scale satellite data were tested with the ETM+ data, namely 

the use of vegetation phenology information (DeFries et al. 1995), or data acquired during different 

seasons, consensus filtering of training data (Brodley and Friedl 1997), and ensemble classifier 

techniques such as boosting (e.g. Friedl et al. 1999; DeFries and Chan 2000). The overarching goal of 

the research is to develop a robust, simple and easily repeatable methodology for classification that 

addresses the specific needs of the Vegetation Mapping Program (VMP), jointly administered by the 

National Park Service (NPS) and the Biological Resources Division of the United States Geological 

Survey (USGS). 

 

II. BACKGROUND 

A. Decision Trees Techniques and Remote Sensing 

The use of decision trees as a viable alternative to more traditional classifiers has been 

explored primarily within the context of global or continental scale land cover classifications 

(DeFries et al. 1998; Hansen et al. 1996, 2000; Strahler et al. 1999; Friedl and Brodley 1997; 

Muchoney et al. 2000). The majority of these studies have utilized data acquired by the Advanced 
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Very High Resolution Radiometer (AVHRR) instrument at fairly coarse spatial scales ranging from 1 

degree to 1km. Typically, these studies have used AVHRR data acquired over an entire year and have 

used the temporal evolution of either the Normalized Difference Vegetation Index (NDVI) and/or the 

individual spectral bands of the AVHRR as attributes for the classification. DeFries et al. (1995; 

1998) and Hansen et al. (2000) derived temporal metrics from a full year of AVHRR data and 

exploited the temporal changes in reflectance/NDVI/brightness temperatures to successfully 

discriminate global land cover types.  

The use of Landsat scenes acquired at different seasons and/or years to improve land cover 

classifications is certainly not a new concept. Among several other studies, Wolter et al. (1995) used 

multiple scenes of Landsat Multispectral Scanner (MSS) and TM for five years to improve the 

mapping of forest types in northern Wisconsin. They also provided an extensive review of the 

literature in using multi-temporal Landsat data for forestry applications. Pax-Lenney and Woodcock 

(1997) used multiple Landsat scenes acquired during the same year as well as different years to 

examine the status of agricultural lands in the Nile Delta in Egypt. Finally, Landsat TM scenes 

acquired during multiple seasons but the same year, so called leaf on/leaf off images, form the basis 

for regional land cover classifications being developed by the USGS within the context of a national 

land cover map of the United States (Vogelmann et al. 1998; Zhu et al. 2000). Clearly, the use of 

temporal information for classifications provides benefits at both fine and coarse resolutions. These 

benefits can easily be explored with decision tree classifiers, as they can provide indications of the 

relative importance of particular attributes or dates for certain land cover classes, and their 

interactions, or be used as a tool for data reduction or feature space exploration (Hansen et al. 1996). 

As has been shown in Hansen et al. (1996) and DeFries et al. (1998), training data, and 

particularly global scale training data, tend towards non-gaussian distributions in spectral and/or 
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temporal feature space, implying a need for alternate methods to classification beyond parametric 

classifiers. Although the non-gaussian behavior of training data may be more severe at coarser spatial 

scales, it is also encountered at finer scales, if one considers a common bare soil category that may 

contain soils of varying brightnesses, for example. Decision trees and neural networks are well suited 

to this type of problem because they are non-parametric, in that they do not make any implicit 

assumptions about normal distributions in the input data. Both algorithms tend to produce 

comparable classification accuracies when tested with the same remotely-sensed data inputs (Strahler 

et al. 1999) and typically outperform other classifiers in terms of classification accuracies (e.g. 

Hansen et al. 1996; Strahler et al. 1999). However, decision trees are typically less computationally 

expensive than most neural networks (Weiss and Kulikowski 1991) and, by virtue of their 

hierarchical structure, also provide analysts and users with a simpler yet robust method to interpret, 

test, and analyze their results (Hansen et al. 1996; Friedl and Brodley 1997). 

The flexible nature of decision trees and the general availability of commercial decision tree 

classifiers such as C4.5 (Quinlan 1993), and its successor C5.0, have aided recent advances in the 

field of machine learning, ensemble classifiers and consensus filtering of the training data being just 

two of these advances. A series of classifiers such as decision trees, termed an ensemble, can be 

combined to produce higher classification accuracies than any one of the particular classifiers. This 

reasoning is the foundation for ensemble classifier methods such as boosting and bagging (Quinlan 

1996; Freund and Schapire 1997). In a boosted tree, a series of decision trees is created in an iterative 

fashion, with each successive tree focusing on the errors of the previous tree, or those instances that 

are most difficult to classify (Friedl et al. 1999). A boosted tree is then produced by voting amongst 

the different trees that have been created. Boosting has been shown to produce improved results over 

standard decision trees (Quinlan 1996; Friedl et al. 1999; DeFries and Chan 2000). DeFries and Chan 
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(2000) also indicate that boosted trees are more resistant to both random noise in the input data 

attributes and errors in the training data introduced by mislabeling during the training phase. 

In consensus or majority filtering of the training data, random blocks of training/testing 

samples are drawn from the original training data a number of times. Each training set is used to 

produce a decision tree, with only those instances that have been classified incorrectly by all or a 

majority of the trees being removed from the training data. The training data generated from such an 

exercise are ‘cleaned’ or optimal in the sense that they minimize the presence of potentially 

mislabeled training instances and noisy data (Brodley and Friedl 1997). The underlying assumption 

of these techniques is that mislabeling errors are almost always introduced in the training process. 

This is particularly true when one considers the development of training data at coarse scales of one 

to several kilometers but is also true when training data are produced using high spatial resolution 

data such as TM or ETM+. While great care is taken to ensure that the training data describe the 

particular land cover type well, the process of generalizing multiple point observations to a polygon 

such as a field inevitably introduces some errors in the training data. The usage of a consensus filter 

to minimize these errors has been shown to be conservative with regards to both identifying the 

mislabeled training data, and not discarding training data that are accurate if perhaps different 

(Brodley and Friedl 1997). Brodley and Friedl (1997) show that the consensus filtering approach can 

also be implemented using different classifiers besides just decision trees and generally improves 

classification accuracies for a global data set where they have introduced artificial training errors at 

various levels. In this study we aim to capitalize on all of the ‘lessons learned’ using decision trees 

for coarse scale land cover applications, but here we examine the performance of these techniques 

when using high spatial resolution data from the ETM+ instrument. The study is also made in the 

context of the NPS/USGS Vegetation Mapping Program, described below. 
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B. The NPS/USGS Vegetation Mapping Program 

The National Park Service initiated in 1992 the Vegetation Mapping component of its 

Inventory and Monitoring Program. The Inventory and Monitoring Program is charged with 

developing methodologies and protocols for the systematic accounting of all the natural resources of 

over 270 park units managed by the NPS, including land cover. The goal of the vegetation mapping 

component of the I&M Program was to develop a uniform hierarchical vegetation classification 

standard and methodology and to apply that standard and methodology to generate vegetation maps 

for most of the NPS park units.  This includes sampling the vegetation, developing local 

classifications, describing the associations, and mapping the spatial extent of the vegetation 

associations.  The vegetation maps are intended to support a wide variety of resource assessment, 

management, and conservation concerns at the park unit, regional, and national levels. 

The vegetation mapping component of the I&M Program has established standards for the 

content, scale, accuracy, and format of the map products resulting from the application of the 

protocols. The vegetation classification scheme used by all of these projects follows the National 

Vegetation Classification Standard (NVCS) specified by the Vegetation Subcommittee of the Federal 

Geographic Data Committee (FGDC) (FGDC, 1997). The goal in developing the NVCS was to 

provide a classification standard that facilitates the interchange and comparison of vegetation 

information produced by different national agencies and organizations working at a range of scales 

and on a wide variety of resource management issues. The NVCS is a hierarchical classification 

system based upon salient physiognomic and floristic characteristics of terrestrial vegetation (FGDC, 

1997).  The Standard provides a list of mutually exclusive vegetation categories within each of nine 

hierarchical levels.  The levels, from most general to most detailed, are: Division, Order, 

Physiognomic Class, Physiognomic Subclass, Physiognomic Group, Subgroup, Formation, Alliance, 
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and Association.  The middle five levels, Physiognomic Class through Formation, are based on the 

physical structure of the vegetation (physiognomy).  The two most detailed levels, Alliance and 

Association, are based on species composition (floristics).  The system is also designed to allow 

aggregation of categories at one level into the more general categories at the next level in the 

hierarchy. 

The mapping protocol used in these projects principally employs aerial photography, 

manually interpreted in conjunction with ancillary field data. Independent accuracy assessment based 

on field observations constitutes a critical component of the protocol.  The resulting vegetation maps 

are required to provide a classification accuracy of at least 80% per class, a minimum mapping unit 

of 0.5 hectare at a scale of 1:24,000. The amount of time required to produce these highly detailed 

maps for an individual park unit typically amounts to two to five years depending on the unit size and 

complexity of vegetation species associations present. 

The vegetation mapping component of the I&M Program was originally begun as a 10-year 

program.  Vegetation maps have been completed for 18 park units since 1994. An additional 10 parks 

are near completion and mapping is in progress in another 58 units. Figure 1 shows the current status 

of the vegetation mapping component of the I&M Program within the conterminous U.S. (see 

http://biology.usgs.gov/npsveg/ for more details). While this effort is producing high quality, detailed 

maps, many parks require more timely information on land cover than is currently available. The 

mapping approach presented here is entirely consistent with the mapping methodology developed by 

the vegetation mapping component of the I&M Program, following the NVCS, the protocols for 

mapping and accuracy assessment, and the standards for final products. This approach involves the 

application of the C5.0 decision tree algorithm, using boosting and consensus filtering of training 

data, to the classification of terrain-corrected ETM+ data using imagery acquired at two dates 
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(Fall/Spring). The final products that will be derived from the ETM+ data will be less detailed than 

the maps currently derived from aerial photography, but will be produced more rapidly and at a lower 

cost, addressing the immediate needs of many parks for current land cover information. While the use 

of Landsat data may be expected to yield greater benefits for larger parks, the spatial coverage can 

allow both small and large parks to be placed and studied within a more regional context. The spatial 

coverage provided by Landsat may also allow the imaging of multiple park units within one scene, 

and the repeated coverage over time may enable more active monitoring of these park lands than 

would be currently available. Results from a pilot project at Delaware Water Gap National Recreation 

Area (NRA) are given here. 

 

III. DATA AND METHODS 

A. Study Area 

The Delaware Water Gap National Recreation Area is located between the towns of 

Matamoras, PA at the northern terminus and Delaware Water Gap, PA to the south, overlapping the 

state line between the states of Pennsylvania and New Jersey. The park covers an area of over 27,000 

hectares, roughly between latitudes 41o21’N and 40o26’N and longitudes 75o10’W and 74o44’W (see 

Figure 2). The vegetation of the park is dominated principally by broadleaf deciduous forests with a 

mix of different species, with some interspersed areas of evergreen needleleaf and mixed 

evergreen/deciduous forests. Of particular interest to park managers is the health of the hemlock 

forests that typically grow on steep ravines near creeks and streams. An aphid-like insect called the 

Hemlock Woolly Adelgid has devastated large stands of these unique forests.  

Because of its historical heritage, many areas within the park contain previous agricultural 

areas in various stages of regrowth. However, many of these agricultural areas still remain active 
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today under park management. Important areas of cropland skirt the eastern border of the park along 

with some smaller urban areas to the SW and NE and more recent low-density residential 

developments to the West of the park. The elevation of the park ranges from about 80 m at the 

Delaware River to 488 m along Kittatiny Mountain which run SW-NE on the eastern boundary of the 

park. Immediate areas surrounding the park can reach altitudes of around 640 m.  

B. ETM+ Data Processing 

In order to capitalize on temporal differences in the signal of the different cover types, two 

pairs of cloud-free, terrain-corrected Landsat 7 ETM+ scenes for two dates (September 23, 1999 and 

January 29,2000) were acquired from the EROS Data Center (EDC) in Sioux Falls, SD. The scene for 

September was acquired before senescence of the deciduous vegetation and the January scene 

contained a substantial amount of snow cover. The scenes covered Path/Row 14/31 and 14/32 in the 

Landsat Worldwide Reference System and were delivered registered to a Universal Transverse 

Mercator (UTM) projection using a North American Datum 1983, as specified by VMP protocols. 

The two scenes for each date were mosaiced together to provide complete coverage of the park. In 

consultation with park scientists and staff, a subset of these scenes covering the park and all of the 

watersheds draining into the park were extracted for classification. ETM+ bands 2, 3, 4, 5, and 7 were 

used for the classification, along with the Normalized Difference Vegetation Index (NDVI), 

calculated as the ratio of the difference in digital counts of bands 4 and 3 divided by their sum. In this 

research, the atmosphere was assumed to be constant over the park and surrounding areas for each 

date.  

C. Field Visits 

Training and validation data were acquired mostly within the park during separate field visits 

in September 2000 and August 2001. During these visits digital photographs were acquired at each 
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site and were tagged with locational information acquired simultaneously with a Global Positioning 

System (GPS). The GPS camera system has a real-time differential GPS receiver system attached to a 

digital camera. The camera runs a script that queries the GPS unit for the time/data and position. The 

script will use that information to place a “watermark” on to a digital photo. Additionally, the script 

produces a comma delimited ASCII text file that can be downloaded from the camera with all of the 

information, such as file name, date, time, position, etc. These photographs are particularly useful for 

training and evaluation because they also provide a spatial context to the site visited and the cover 

types that are present in its general vicinity (Figure 3). The photos also become part of the record for 

any particular park and can assist the task of monitoring by repeat visits to the same site over time.  

The training visits served to delineate areas around each study site within the ETM+ images 

where a particular cover type was known to exist with high confidence. Other training areas in the 

areas surrounding the park were also delineated based on similarity of spectral/temporal changes in 

the ETM+ digital counts. A total of 13449 training pixels were delineated in this fashion on the 

imagery. Because sufficient samples were not obtained for either needleleaf or deciduous open tree 

canopy (i.e. Woodlands) and Shrublands categories, only single Woodlands and Shrublands classes 

were considered. An Urban/developed category was added to split the NVCS non-vegetated category 

in two, again based on the needs of the park scientists. Table 1 shows the land cover classes 

considered and the number of pixels used for each. A random sampling strategy stratified by land 

cover type was used in the evaluation or validation phases. Some 140 sites were visited during this 

phase. An additional 57 points were extracted visually from the imagery and air photography and/or 

crops/managed fields GIS coverages of the park. 
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D. Description of the C5.0 Decision Tree 

In their simplest form, decision tree classifiers successively partition the input data into more 

and more homogeneous subsets by producing optimal rules or decisions, also called nodes, which 

maximize the information gained and thus minimize the error rates in the branches of the tree (Weiss 

and Kulikowski 1991). Each final leaf is then the result of following a set of mutually exclusive 

decision rules down the tree.  

The C4.5 and C5.0 decision trees are described in detail in Quinlan (1993), Friedl and 

Brodley (1997) and DeFries and Chan (2000). The C5.0 and C4.5 decision trees use the gain ratio to 

determine both the best attribute to separate the different classes in the training data as well as the 

best possible threshold to make this separation (Quinlan 1993). This process of recursively dividing 

the training data into smaller and smaller subsets continues until the leaves of the tree contain only 

cases from one class or until the splitting does not provide any improvement in the gain ratio.  

A decision tree created in this fashion typically “overfits the data” and is generally quite 

accurate with respect to the training data that were used to produce it. However, because the training 

data typically contain labeling errors as well as attribute noise, some of the splits will be created from 

this noisy data and may in fact give very poor results when applied to unseen data or new cases 

(Weiss and Kulikowski 1991; Quinlan 1993). Such a tree will thus provide little predictive capability 

which is in fact one of the goals of building a decision tree in the first place. At this point the tree is 

generally pruned back starting at the leaves and moving upward by considering whether the 

information gain from one sub-tree, and the whole tree by extension, can be improved by replacing it 

with either its most common leaf or a branch. This process is fully automated in C5.0 and does not 

require a separate sample of the training data, as in other tree pruning methods (e.g. Breiman et al. 

1984). The severity of pruning in C5.0 can be adjusted in two ways. In the first, the user can specify 
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the minimum number of cases that must follow each of the branches of a tree. The second is based on 

a user-specified confidence level used to calculate the predicted error rate at each leaf, branch and/or 

sub-tree, as well as the predicted number of errors for each of these. Smaller values create more 

severe pruning. A pruned tree created by adjusting these two parameters results in a decision tree that 

is smaller and more generalized, does not perform as well on the original training data, but on the 

other hand can provide improved accuracy when applied to new cases (Quinlan 1993, 1999). 

C5.0 also incorporates new methods in machine learning such as boosting. In boosting, an 

initial decision tree is created as described above and forms the basis for building a series of 

subsequent trees that are forced to focus on the errors of the previous one. This procedure is 

performed by updating a set of weights assigned to each training case and which are set equal in the 

initial tree or trial. After the first tree is created those weights for erroneous cases are proportionally 

increased, and those for correct cases are proportionally decreased. The next tree is produced with 

these new weights and the process is repeated, classifying in essence the “difficult’ cases found in the 

training data (Schapire 1999). Voting amongst the different trees that have been created in this 

fashion then produces a boosted tree. After 10 such trials on 27 different data sets, Quinlan (1996) 

shows that boosting reduces the amount of errors by about 15% on average over the use of a single 

tree. 

For this study, the 13449 training samples were randomly divided into 20 equal-sized training 

and testing blocks. The C5.0 tree was run for each of the 20 training blocks using fairly severe 

pruning in order to produce smaller, more generalized trees that would better capture any mislabeled 

training data. These 20 trees were then applied to the unseen testing blocks and those training/testing 

pixels misclassified by all 20 trees were discarded, following Brodley and Friedl (1997). The 

remaining training pixels were then input into a boosted tree to produce the final decision trees. These 
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boosted trees were applied to the entire subset of Landsat data to produce the final products. The use 

of one Landsat scene versus multiple scenes was evaluated by considering the overall and per-class 

classification accuracies obtained with either or both of the scenes on the 50% testing samples. In a 

preliminary step, elevation, slope and aspect information were planned to be used in conjunction with 

the Landsat data but the training data for each class were found across a broad spectrum of elevation, 

slope and aspects. The performance of C5.0 using only the Landsat 7 attribute data and the training 

data was also internally evaluated using the 50% testing samples that are kept separate from the tree-

building process. Finally, labels assigned by C5.0 in the final tree were compared to those determined 

from field visits to provide an independent accuracy assessment of the land cover map, following 

methods described in Congalton (1991).  

 

IV. RESULTS AND DISCUSSION 

The mean accuracy obtained on the 20 50% testing blocks can be used for internal evaluation 

of the performance of the classifier with these training data. Because the training and testing data in 

this case are not truly independent, these results may typically provide an optimistic estimate when 

compared to results obtained against independent sources. We also use this internal evaluation to 

ascertain the effect of using one or multiple Landsat scenes for the classification. When using only 

the January scene, the mean error rate on the 20 testing samples (n=6727) is 30.01% (±0.32%). In this 

case there is some substantial confusion between the three forest types and the Woodlands category 

but, more significantly, nearly all short vegetation types as well as bare categories are severely 

confused, including the water bodies that are covered with snow and/or ice. In contrast, the results 

obtained for the three forest types are quite good (e.g. Evergreen Needleleaf Forests have producer’s 

and user’s accuracies of 96.81% (±0.67%) and 94.67% (±0.58%), respectively). When using only the 
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September 23 scene, the average classification error was 28.49% (±0.42%) over the same testing 

samples, somewhat better than using only the January scene. Using only this scene, the results for the 

forest types show moderate to good producer’s and user’s accuracies, ranging from 46.74% to 

83.16% and 54.53% to 86.77%, respectively, from the Mixed Forest class to the Evergreen 

Needleleaf Forests class. The Deciduous Broadleaf Forest category provided intermediate values 

from the other two forest classes. The accuracies for all short vegetation types increase substantially 

when compared to those obtained with the January scene. Classes 7, 9, 10, and 11 all have users and 

producers accuracies of 80% or better when using only the September scene, with Classes 6 and 8 

with values above 70%. 

When comparing the mean user’s and producer’s accuracies obtained with single scenes for 

either date, the separation of all the forest types is decreased from January to September, with 

differences of over 30% in some cases such as the Mixed Forest class producer’s accuracies. In 

contrast, other classes such as wetlands show large improvements of over 70% in both users and 

producers accuracies when using the September data over the January data. More moderate but still 

substantial improvements are also found in this scenario for the bare category (+40% producer’s, 

+32% user’s), Woodlands (+29% producer’s), Grasslands (+22% for both user and producer), and 

Croplands (+25% user’s). For both dates, the results obtained for the Shrublands category are rather 

poor, indicating that this class contains substantial training errors and/or overlaps with other classes 

in spectral space. Nonetheless, the results indicate that an approach that uses a combination of scenes 

may be warranted to exploit the benefits of each scene in order to provide improved land cover 

discrimination. 

The mean errors for the 20 testing blocks when using two dates in the classification were 

substantially reduced at 16.41% (±0.48%), for an average improvement of about 12.08% (±0.46%) 
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over the September scene alone, and 13.60% (±0.54%) for the January scene. The use of two dates in 

the classification reduced the errors made using either scene by nearly half and generally reduced the 

confusion between all cover types. Using results for one training/testing random combination as a 

typical example, it is found that the reduction in confusion between only the three forest types 

accounts for over two thirds of the total improvement over just the September scene, and over ~85% 

when considering the improvement for all the forest types and the woodlands classes. The 

improvement seen over the January scene is more evenly distributed among the non-forest cover 

types, with the Forest/Woodland classes still accounting for ~21% of the improvement and the 

Grasslands class alone showing an improvement of over 19%. Clearly, the usage of two dates is very 

important to the accurate classification of the cover types considered here. 

Table 2 shows the confusion matrix for the same testing samples discussed above and 

highlights both the successes and shortcomings of the classifier when using the original training data. 

On Table 2, the labels of the test data are given in the rows while the classification results are given 

in the columns. In this particular case, the overall error rate is 15.9%. Closer examination of the 

matrix reveals that 28.72% of the total errors are caused by confusion between the three forest types, 

with 22.7% just between mixed and deciduous broadleaf forests. The confusion between the 

woodlands category and the three forest types accounts for 21.5% of the total errors while the errors 

for the woodlands class alone account for over 34% of the total error. Table 2 also shows that few 

errors are found between forest and non-forest types. These results are summarized on Table 2 from 

user’s and producer’s accuracies. These show that the user’s and/or producers accuracies are greater 

than 80% for eight out of the 11 types considered but also show the poor success obtained for the 

shrubland class. These highlight the difficulties in separating fairly similar cover types (e.g. forest 
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types), or cover types that form a continuum between other cover types (e.g. Woodland/Shrubland/ 

Grassland). 

Table 3 shows the mean user’s and producers accuracies for all 20 testing blocks when using 

both dates for the classification. These results confirm the good results obtained in general for both 

accuracy and stability for most classes, except Woodlands and Shrublands, and to a lesser extent 

grasslands. The larger standard deviations for the mean accuracies for these classes are also indicative 

of the difficulties in classifying these classes from the ETM+ data alone. In spectral space, and even 

over time, the signatures for these classes tend to overlap with those of classes of lower and higher 

tree densities, such as is the case of some woodlands being confused with both with forest classes 

and/or shrubs or grasslands. Additionally, because the training process is also somewhat subjective, it 

is likely that some training pixels for particular classes are mislabeled.  

Assuming that some errors have been made during the training phase, the goal of using a 

consensus filter is to identify those instances that are the most troublesome and thus to improve the 

quality of the training data that are used to produce the final product. Decision trees are particularly 

well suited to this type of approach. The approach of using a consensus filter of 20 trees is also 

conservative with regards to potentially discarding useful data (Brodley and Friedl 1997). 

During this filtering process, 691 original training pixels, or 5.14% of the original training 

data, were misclassified by all 20 trees. Table 4 shows the number of pixels per class, as well as the 

percentage of pixels per class from the original training data that were identified during this analysis. 

In terms of proportions per class, 29.1% of all Shrubland training pixels were identified as 

mislabeled, while all 20 trees misclassified almost 10% of the Woodlands category. All other classes 

were below 10%. The magnitude of these proportions are expected based on the results presented in 

Tables 2 and 3, with classes showing more confusion having more mislabeled pixels than others. It 
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should also be noted that the two smallest classes in terms of training data (Shrublands and Wetlands) 

have substantially different proportions of pixels identified as mislabeled, indicating the different 

performance of the classifier for each of these classes. The 691 training pixels identified here were 

discarded and the new training set of 12758 pixels used to produce the boosted tree and final 

vegetation map and using both scenes for the classification. 

Table 5 provides an evaluation against 195 validation points collected principally from 

ground-based sources of the final land cover map produced from two ETM+ scenes using a boosted 

decision tree and the filtered training data. The overall accuracy of this map is 82.05%, with a Kappa 

coefficient of agreement (Congalton 1991) of 0.80. The forest/non-forest separation is excellent, with 

only one sample being classified incorrectly, indicating that the usage of multiple ETM+ scenes can 

provide very accurate results over the use of a single date, particularly for the different forest types. 

More confusion is found for the Grasslands class as well as the Croplands class, with some errors 

also associated with the two sparse vegetation classes (Bare, Urban). Because some croplands fields 

had been already harvested at the time of the September scene, being left bare or with some senescent 

vegetation, this source of confusion is not unexpected, as similar issues were encountered by Zhu et 

al. (2000) during their accuracy assessment of the USGS New York/New Jersey regional land cover 

product. Likewise, the presence of snow in the January scene may have caused these classes to 

appear similar in spectral space. It is suggestive that perhaps a scene acquired during peak-greenness 

(e.g. July) may have allowed these classes to be better separated. Nevertheless, the overall accuracy is 

above the expected accuracy of 80% for these 11 cover types and compares quite favorably with 

those results published by Zhu et al. (2000), albeit with a different number of land cover classes. 

Because the cover types found in the general vicinity of the park are very similar to those found 

outside the park, we fully expect that these validation results can be extended to the larger area 
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surrounding the park. Figure 4 shows the final land cover map of Delaware Water Gap NRA and 

surrounding areas. On this figure the park boundaries are shown in black while the boundaries of all 

the watersheds draining into the park are shown in red. 

 

V. CONCLUSIONS 

The methods developed for this pilot project are flexible and can be easily automated. The 

decision tree methods and techniques developed for coarse scale land cover applications appear to be 

extendable to high spatial resolution data. The results and land cover classes are in large part 

consistent with the protocols set forth by the VMP, and compare well with other published results. 

Perhaps more importantly in the context of projects such as the VMP, the methods are accessible to a 

wide variety of users, including park scientists and managers who may not always have a lot of 

expertise with remote sensing. The results demonstrate the applicability of the approach not only to 

the entire National Park system but also to high spatial resolution land cover applications. These 

maps can support a wide variety of park activities while also allowing the park to be placed and 

studied within a more regional context. Moreover, the maps can be produced routinely and at a fairly 

low cost, further addressing the more immediate needs of many parks for land cover information. 

Because this is a pilot project, several avenues for refinement or improvement in the 

methods/results have been identified. First, the use of an additional Landsat scene during peak 

greenness may improve the separation of land cover types such as grasslands, pastures, croplands and 

bare ground. Second, further refinement of the training data is needed to allow the production of a 

complete map at the formation level of the NVCS (e.g. Deciduous and Evergreen woodlands and 

shrublands). Third, improvements and possible separation of the wetlands category into grass-

dominated wetlands and more forested wetlands may be warranted. Finally, in order to refine the land 
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cover categories beyond the formation level, the decision tree can be augmented by using other 

remotely sensed information or other ancillary data sets such as Digital Elevation Models (DEM) 

and/or soil type information, for example, in turn providing potential improvements in classification 

accuracies. This type of information could also be used to potentially separate Hemlock stands from 

other evergreen needleleaf forest types, as Hemlocks preferentially grow in steep ravines with 

northern exposures. 
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Table 1. General land cover categories considered in this study and their correspondence with NVCS 
formation classes (FGDC 1997). The number of original training pixels for each category used to 
train the decision trees is also given. General class names are given for clarity. The reader is referred 
to FGDC (1997) for exact NVCS formation names and definitions. 
 

Land Cover Category NVCS Formation Code Number of Training 
Samples 

1) Evergreen Needleleaf 
Forest 

IA8Nc 2306 

2) Broadleaf Deciduous 
Forest 

IB2Na 2068 

3) Mixed Forest IC3Na 2287 
4) Woodland IIA4Nb or IIB2Na 1246 
5) Shrubland IIIA2Na or IIIC2Na 351 
6) Grassland VA5Nd 757 
7) Marshes or Riparian 
Vegetation 

Various 363 

8) Cropland Various 996 
9) Bare/Sparse Vegetation VIIA1Na or VIIA2Na 896 
10) Urban/Developed Non-vegetated 752 
11) Water Bodies Non-vegetated 1427 
Total  13449 
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Table 2. Typical confusion matrix for one of the decision trees using the two Landsat scenes when 
applied to one 50% testing block (n=6727). The classification results are shown in the columns and 
the actual labels of the test data are shown in the rows. This matrix highlights the principal areas of 
agreement and confusion for the classifier. User and producer accuracies for this testing sample are 
also shown. Class numbers correspond directly to the classes listed in Table 1. 
 

  
 

1 
ENeF 

2 
DBrF 

3 
MixF

4 
Wdld

5 
Shrb

6 
Gras

7 
Wtld

8 
Crop

9 
Bare 

10 
Urbn 

11 
Watr

1 ENeF 1134 8 8 3 0 0 0 0 0 0 0
2 DBrF 24 830 144 35 0 0 0 0 0 1 0 
3 MixF 19 104 960 54 5 0 0 2 0 0 0 
4 Wdld 14 70 54 445 15 8 0 12 5 0 0 
5 Shrb 1 3 3 56 41 41 0 18 11 2 0 
6 Gras 0 0 2 16 14 268 0 50 29 0 0 
7 Wtld 0 0 1 2 0 0 133 9 14 0 23
8 Crop 1 1 3 13 9 35 1 426 8 1 0 
9 Bare 0 0 2 8 3 15 1 44 368 7 0 

10 Urbn 0 0 0 0 1 1 1 7 9 357 0 
11 Watr 7 0 0 0 0 0 11 0 0 0 696

Prod. 98.35 80.27 83.92 71.43 23.30 70.71 73.08 85.54 82.14 94.95 97.48
 User 94.50 81.69 81.56 70.41 46.59 72.83 90.48 75.00 82.88 97.01 96.80
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Table 3. Mean per-class producer’s and user’s accuracies obtained against 50% testing samples. 
Second row for each cover type is the standard deviation of the accuracies for 20 trees. 
 

 Producer’s User’s  
98.49 94.12 1) ENeF 
0.14 0.27 
81.83 78.62 2) DBrF 
1.87 1.36 
81.24 83.07 3) MixF 
1.44 1.65 
67.99 66.85 4) Woodland 
3.09 3.27 
20.85 42.28 5) Shrubland 
6.62 5.85 
74.16 69.19 6) Grassland 
3.64 2.70 
83.21 88.04 7) Wetland 
4.58 3.45 
78.92 79.91 8) Cropland 
3.81 2.69 
84.12 85.12 9) Bare  
3.11 2.65 
94.56 96.05 10) Urban 
1.53 1.66 
97.13 96.91 11) Water 
0.74 0.63 
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Table 4. Number of training pixels per land cover class that have been filtered by consensus filtering. 
The proportion of pixels filtered with regards to the original data are also given. 
 

 # of Pixels Filtered % of Original Training 
Samples 

1) ENeF 22 0.95 
2) DBrF 163 7.88 
3) MixF 157 6.86 
4) Woodland 124 9.95 
5) Shrubland 102 29.06 
6) Grassland 40 5.28 
7)Wetland 11 3.03 
8) Cropland 33 3.31 
9) Bare 19 2.12 
10) Urban 9 1.20 
11) Water 11 0.77 
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Table 5. Confusion matrix when comparing results from the final boosted tree using two dates of 
ETM+ data with 195 samples obtained during validation field visits. Here the reference data are in 
the rows and the classification results in the columns. The overall accuracy is 82.05%. The Kappa 
coefficient of agreement is 0.80. 
 

  
 

1 
ENeF 

2 
DBrF 

3 
MixF

4 
Wdld

5 
Shrb

6 
Gras

7 
Wtld

8 
Crop

9 
Bare

10 
Urbn 

11 
Watr 

Total

1 ENeF 20 0 0 0 0 0 0 0 0 0 0 20
2 DBrF 0 18 3 0 0 0 0 0 0 0 0 21
3 MixF 1 1 12 0 0 0 0 0 0 0 0 14
4 Wdld 0 1 0 12 0 1 1 1 0 0 0 16
5 Shrb 0 0 0 1 8 1 0 0 1 0 0 11
6 Gras 0 0 0 2 1 29 1 3 2 2 0 40
7 Wtld 0 0 0 1 0 0 4 0 0 1 0 6
8 Crop 0 0 0 0 0 6 0 13 3 4 0 21
9 Bare 0 0 0 0 0 0 0 0 18 1 0 19

10 Urbn 0 0 0 0 0 0 0 1 0 13 0 14
11 Watr 0 0 0 0 0 0 0 0 0 0 13 13

 Total 21 20 15 16 9 32 6 18 24 21 13 195
User 95.24 90.00 80.00 75.00 88.89 90.63 66.67 72.22 75.00 61.90 100

 Prod. 100 90.00 85.71 75.00 72.73 72.50 66.67 61.90 94.74 92.86 100  
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LIST OF FIGURES 
 
Figure 1. Current status of the USGS-NPS Vegetation Mapping Program. 
 
Figure 2. Location map of the Delaware Water Gap National Recreation Area. 
 
Figure 3. Example of digital imagery used in the training and validation phases. Each image can be 
automatically tagged with locational and other data acquisition information available from a 
connected real-time GPS system. This particular image points south and shows a view of the 
Delaware River at Quicks Island in the northern portions of the park. 
 
Figure 4. Final land cover map of Delaware Water Gap National Recreation Area using a boosted tree 
with filtered training data. The boundaries of the park are shown in black while the watersheds 
draining into the park are shown in red. 
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